Robust compressive sensing of sparse signals: a review

نویسندگان

  • Rafael E. Carrillo
  • Ana B. Ramirez
  • Gonzalo R. Arce
  • Kenneth E. Barner
  • Brian M. Sadler
چکیده

Compressive sensing generally relies on the l2 norm for data fidelity, whereas in many applications robust estimators are needed. Among the scenarios in which robust performance is required, applications where the sampling process is performed in the presence of impulsive noise, i.e. measurements are corrupted by outliers, are of particular importance. This article overviews robust nonlinear reconstruction strategies for sparse signals based on replacing the commonly used l2 norm by M-estimators as data fidelity functions. The derived methods outperform existing compressed sensing techniques in impulsive environments, while achieving good performance in light-tailed environments, thus offering a robust framework for CS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Recovery of Clustered Sparse Signals from Compressive Measurements

We introduce a new signal model, called (K,C)-sparse, to capture K-sparse signals in N dimensions whose nonzero coefficients are contained within at most C clusters, with C < K ≪ N . In contrast to the existing work in the sparse approximation and compressive sensing literature on block sparsity, no prior knowledge of the locations and sizes of the clusters is assumed. We prove that O (K + C lo...

متن کامل

Robust group compressive sensing for DOA estimation with partially distorted observations

In this paper, we propose a robust direction-of-arrival (DOA) estimation algorithm based on group sparse reconstruction algorithm utilizing signals observed at multiple frequencies. The group sparse reconstruction scheme for DOA estimation is solved through the complex multitask Bayesian compressive sensing algorithm by exploiting the group sparse property of the received multi-frequency signal...

متن کامل

Compressive Sensing for Sparse Time-Frequency Representation of Nonstationary Signals in the Presence of Impulsive Noise

A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The twodimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in th...

متن کامل

Simultaneous Sparse Approximation and Common Component Extraction using Fast Distributed Compressive Sensing

Simultaneous sparse approximation is a generalization of the standard sparse approximation, for simultaneously representing a set of signals using a common sparsity model. Generalizing the compressive sensing concept to the simultaneous sparse approximation yields distributed compressive sensing (DCS). DCS finds the sparse representation of multiple correlated signals using the common + innovat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016